
www.manaraa.com

International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number 4 – Dec 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 184

Software Engineering Design Issues

1
Soma Akhil, Soma Anvesh

2

1
Accenture, India,

2
TCS, India

G-15, Krishna Arcade, Nizampet, Kukatpally, Hyderabad, Telangana, India-500090

Abstract— Research in software engineering is concerned with

the automation and the enhancement of the processes of building

some computer related application systems. In this paper, we

mentioned some significant software engineering problems from

the context of developing very large information systems. The

aim of the paper is to investigate applicability of object-oriented

software design patterns in the context of aspect-oriented design.

The main assumption is that there exist design patterns that solve

software engineering paradigm independent design problems

and that such patterns, in the contrast to the patterns solving

paradigm-specific design problems, can be expressed in terms of

any software engineering paradigm.

Keywords- VLSI View point, Software Development issues, System

evolution, Paradigm problem, Large scale Integration, GoF23

patterns.

I. INTRODUCTION

 The ultimate aim of research in software engineering (SE) is

to improve the quality and productivity associated with both the

products and processes of software development. The foreseen

benefits are improvements in the management of the development

process, increases in user satisfaction, and the delivery of greater

functionality to the market place in the form of software and related

products. A number of software engineering paradigms, approaches

and methodologies exist today. Although the object-oriented (OO)

paradigm still remains one of most popular, it is gradually replaced

by the aspect-oriented (AO) because of the concern crosscutting

problem.

 Some of the major problems associated with the automation of

software development occur with respect to requirements

specification, design, reusability, maintenance, validation,

verification, and testing. The approach to research on the problems of

software engineering is founded on a different class of application

domains; namely that of very large information systems (VLIS). In

the following sections we briefly define and characterize VLIS and

the problems associated with VLIS development. The intent is to

contrast the nature of the software development problems. As a
result we hope to illuminate new perspectives on the software

engineering problem and construct a foundation from which an

integrated, productive research program can be launched for software

engineering issues in VLIS.

II. VLSI View point

 VLIS are federations of subsystems developed according

to a system wide design plan to provide information to support

the operational, decision-making, managerial and analytical

functions of an organization.

 Information Systems Pyramid

 The operational scope of the VLIS across different levels can be

characterized as a pyramid structure in business activities. As if we

consider the case with embedded systems, VLIS development is

mainly concerned with the performance of software and the

functional complexity. In essence, the complexity of a VLIS is

rooted in the demographic complexity of the application environment

and the size of the system. SE research therefore needs to contain a

strong empirical component and should be grounded by data

generated from the industrial experiences. The formulation of

research problems and the strengths and weaknesses of the

alternative approaches need to be subjected to the test of time

constraints, resource limitations, industrial practices and economic

pressures.

III. Software Development Issues

 This mainly describes some of the issues associated with the

software development process in the context of VLIS. Here in each

case we define the issues, find the sources of its existence, and

discuss the implications of what to do accordingly. And then we see

these issues as highly interdependent with other and regard the

approach to an overall solution as necessarily dependent on

concurrent development in each and every area.

A. System Evolution

 Currently, the process of maintenance is too often similar to that

of patching of software bugs. The software maintainability is

assumed wrongly to be a natural byproduct of good systems

development. These perceptions are faulty and thus results to the

maintenance crisis being experienced today. So today in order to

support the scope of maintenance, it must be recognized that

software systems need to evolve and that this evolution of systems

cannot be treated in the same manner as initial development.

 The ability to continuously evolve is crucial for VLIS.

Information systems are typically a critical arm for the business and

http://www.ijettjournal.org/

www.manaraa.com

International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number 4 – Dec 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 185

it must adapt continuously to the changing business environment.

Change is not the exception for these software systems, it is just the

norm. Unless they can effectively adapt to the needs of the company,

the competitive position of the company and the stability will be

jeopardized.

 So in order to support system evolution, information required

during maintenance must be available and processes which directly

support maintenance must be developed. Taken together, design

rationale and the maintenance processes must help the designer (1)

understand the structure, functionality and behavior of a system (2)

assess the level of impact of alternative changes, and finally (3)

control of the impact of necessary changes that are made. Of course,

maintainability and the integrity of the system must be preserved.

 Supporting system evolution must be viewed as a major factor in

shaping an approach to formalizing the design process, Maintenance

requires more information because an existing system represents a

large set of constraints which does not exist during initial design and

the design tradeoffs made during maintenance differ from those in

the initial design process. For example, data structure decisions

maybe driven by efficiency and quality during initial development

but by minimization of impact during maintenance.

B. Leveraging Expertise and Experience

 Necessarily large size of VLIS development team members

combine with the relative scarcity of highly experienced builders

mandate the judicious use of less experienced personnel in most of

the phases of development. Leveraging expertise and experience is

concerned with the ability to successfully complete and manage large

software development projects with a relatively small percent of

highly experienced and proven resources. This is the critical issue

given that the success of a project development is directly correlated

with the levels of experience and talent across members of the

project team.

 The main focus of SE research should be on supporting the high

level design activities where the dividing of high level problems into

relatively independent components takes place. The simple

functional demands of individual programs allows for their

construction by less experienced members.

C. The Design Process

 The design process is the task of generating or creating design

byproducts and subsequently refining, evaluating, integrating, and

modifying these byproducts until the final result satisfies the initial

requirements that are taken according to the problem definition. In

essence, the design process is the task of mapping problem

requirements to design solutions. The design process should be

guided by a economic, productive and controllable methodology that

will ensure a high quality product.

 The reasons why the design problem is important are necessary.

Good design decisions made early have a positive effect on the

efficiency of the development process and the quality of the ultimate

product. Poor design decisions declines the efficiency, quality and

cost of the development process and the design products.

 Design of the software development is categorized by a necessity to

deal simultaneously with a large number of diverse constraints. In

general the design problems are intractable. However, we believe that

the combination of the restricted domain of VLIS development, the

knowledge accumulated from the experience of building a large

number of VLIS and the simplicity of its algorithmic requirements

provides good insights into the available expertise, known

alternatives and solutions. Mainly our intention is to exploit the

natural structure in ways that allow us to reduce the complexity of

the problem to manageable levels. We mention several issues that

help focus some of the design process concerns.

1) The Paradigm Problem:

 The paradigm problem mentions to the failure to develop and

recognize a productive, manageable, economically feasible process

model for SE. Attention has been focused on the development of new

software engineering paradigms, but till now no results have proven

completely satisfactory for VLIS development. Any successful

model must deal with the interdependent facts of making design

decisions while recognizing the need for adequate leverage and

project management.

2) Bridging the Functional to Technical Gap:

 A notable portion of the design process occurs when

translating the business problem description in to a high level

systems design. Today, the techniques at this level of the

development process are not clearly understood. The result is we

cannot able to map problem requirements to technical solutions. No

good languages have been developed in which the requirements of

the problem can be expressed and ultimately transformed to technical

solutions.

3) Design Evaluation:

 So in order to make good design techniques and decisions,

one must have the ability to assess the quality and validity of a

particular design decision or can able to weigh the relative merits of

competing design alternatives. The lack of evaluation ability

definitely leads to inadequacies in assessing the impacts of a design

decision on all factors of the design process. Under the umbrella title

of evaluation we include testing, verification, validation and, as a

specific instance, prototyping.

4) The Representation Problem:

 The representation problem is a elementary requirement for

advancement in each of the areas mentioned above. The issue is the

ability to manipulate, express and make inferences about design

decisions and processes. Currently, major development takes place at

very low level design for at least two reasons. Firstly, current

methods of software engineering encourages the designers to think in

terms of low level issues such as data structures, performance

measures, database, screens, and interfaces etc because these

representations are the only mechanisms that provide evaluation

feedback and feasibility measures. So as a result designers move to

lower levels without adequately investigating alternative early design

decisions. Second, the nature of the business is that cost pressures

often do not allow for a need to investigate on high level design

http://www.ijettjournal.org/

www.manaraa.com

International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number 4 – Dec 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 186

alternatives. As a result, projects designs are often inadequate and

easily damaged.

5) Large Scale Integration:

 The major problems of large scale integration is concerned with

the understanding, usage and exploitation of the functionalities,

protocols, standards and communication interfaces of a

heterogeneous set of technologies in developing large systems.

Integration of different component systems differing both in

functionality and platform is important because systems within the

commercial environment can no longer be treated as isolated entities.

In fact there is great discourage to do so.

 The large scale integration problem mainly points out the need to

understand the interrelationships of all systems within a company.

Efforts need to be concentrated on large scale design at the

enterprise, or companywide level before detail design and

implementation of a particular component is undertaken.

Understanding the enterprise level connectivity and integration issues

is extremely important and will have tremendous impact upon the

design process.

IV. AO Solutions of Paradigm Independent Design

Problems

 If GoF23 pattern can be applied in AspectJ by using AO only, it

can be viewed as a pattern that, respecting for OO and AOP

paradigms, solves a paradigm-independent design problem. Despite

of it, in such a case, both OO and AO patterns solve the same design

problem, their usage differs. The OO patterns solves this problem for

objects, whereas the AO patterns solves it for aspects. Let us briefly

consider the suggested methodology, to rewrite paradigm-

independent GoF23 design patterns for aspects.

 If a GoF23 pattern, maybe with a reduced significance, can be

implemented using only singletons, this pattern is considered

as a candidate to be a paradigm independent pattern for

rewriting in AspectJ.

 All the classes in the candidate pattern should be replaced

with aspects and all object constructors should be replaced by

the AspectJ static method aspectOf, which allows us to access

the cite of the aspect.

 The candidate pattern should be analyzed in order to discover

and remove irrelevant data members and methods. Some data

members and methods can become irrelevant because the

aspects which replaced the classes are singletons and because

of transformation of some pattern members to fit the point cut

model in the pattern.

A. Investigation of the Applicability of GoF23 Patterns

to Design the Aspects

 Firstly, let us discuss these GoF23 patterns – Singleton, Prototype,

and Composite – that are pointless in the aspect-oriented paradigm.

The Singleton pattern becomes trivial after rewriting it in AspectJ

and disappears. The essence of Prototype pattern is the ability of

objects to clone its instances (i.e., create several instances of the

same class based on already existing instance). However, in AOP no

one needs to clone the aspects. Even if it is possible to use several

instances of aspects per object or per control flow, it is not possible

to control instantiation in the way to support cloning. Thus, Singleton

and Prototype design patterns are senseless in AO paradigm.

Senseless is also the Composite pattern because, in the case of OO

paradigm, its implementation requires to hold the references from

one to another instance of Composite object. In the case of AO

paradigm, the solution results in an eternal loop when only one

container aspect is defined and this aspect is referenced in a tree at

least two times.

 We use UML class diagrams to model both OO and AO patterns.

To represent aspects in UML models we use stereotypes: Aspect,

Advice, Pointcut, and Joinpoint. The latter one represents the relation

between the pointcut, described in the aspect, and its actual

joinpoints in classes. While modelling the AO patterns by UML, we

use the traditional UML relations such as inheritance, association,

and dependency. For a better understanding of the diagrams.

V. Conclusions

 The intent of this paper is to discuss the suggestions that

the process of developing very large information systems (VLIS) has

on the approach to the software engineering problem. Although the

same SE problems are found in many domains, they take on a unique

set of constraints when considered in the context of developing

VLIS. It is our position that possibilities for enhancing the software

development process are functions of the domain in which one

participates. The paper proposes a classification of the ways of

solving design problems using OO and AO design patterns. The

proposed classification contributes to the better understanding of

relations among the design problems and the design patterns. The

paper proposes also a technique for redesigning object-oriented

patterns into pure aspect-oriented ones and demonstrates application

of this technique for the GoF23 design patterns.

References

[1] Craig Gaskell and Armstrong A. Takang,Professional issues in

software engineering the werswective-of UK academics

[2] Zilvinas VAIRA, Albertas C APLINSKAS Vilnius University

Institute of Mathematics and Informatics Software Engineering

Paradigm Independent Design Problems, GoF 23 Design Patterns,

and Aspect Design

[3] David NotkinAutumn Quarter 2008 Software engineering issues

[4] RICHARD H. THAYER, ARTHUR B. PYSTER, AND ROGER

C. WOOD, Major Issues in Software Engineering Project

Management.

[5] Jochen L. Leidner School of Informatics, University of

Edinburgh, Current Issues in Software Engineering for Natural

Language Processing.

http://www.ijettjournal.org/

